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Abstract: We extend the analysis of the accuracy of Interferometric SAR (InSAR) for
topographic mapping to cover a variety of topics which have not been previously examined
inthe literature, These include deriving the position measurement sensitivities for arbitrary
interferometer geometries, scatterer distributions, point target responses, and for InSARs
using frequency diversity (following the proposal of Gatelli et a.[1]). The relative merit
of single frequency and two-frequency InSAR systems is discussed, and the superiority of
the latter is shown quantitatively. The effect of tropospheric propagation is also considered
and it is shown how this may be incorporated easily into the standard InSAR processing.

1 Introduction

InterferometricSAR (In SAR)is one of the most promising techniques for obtaining very
high resolution and accuracy topographic data from space and airborne instruments. Unlike
more mature methods, such as stereo photography, the technique is still in its development
stage.One of the current advantages of stereo photography data is that its limitations are
well understood and formal nap errors can be derived. To advance InSAR topographic
mapping to the same level, it is important to understand its inherent capabilities and
limitations. The first systematic investigation of InSAR errors was performed by I.i and
Goldstein [2]. Subsequently, Rodriguez and Martin [3] presented a refined analysis which
included the effect of volume scattering.

‘I'he purpose of this paper is to present a systematic analysis of the InSAR error budget
for airborne systems including various effects previously ignored. In the first and second
scctions, we derive the interferometer positioning equations and their sensitivities for an ar-
bitrary imaging geometry: “squinted” SAR processing and arbitrary interferomneter baseline
orientations are alowed. Most of the error sources identified in these sections have a smple
geometric interpretation and are not intrinsically related to the scattering characteristics of
the imaged scene. This is not the case for the interferometric phase, and we devote the next
three sections to examining this error source in detail. We extend the previous analyses to
include the possibility of using a two-frequency interferometric system, following an idea
introduced by Gatelliet al . [I], and contrast the performance of this method against more
traditional single frequency interferometers. Finaly, we examine the effects of the tropo-
sphereon INSAR performance and show how the interferometric equations may be changed
simply to account for signal delay and ray bending.

2. The Interferometric Equations

An InSA R system determines the position vector of a pixel given the following mea-
surements: 1) 7,, the position vector of a point, which we take to be half way between
the two interferometer antennas (see figure 1); 2) #,and#_, the electromagnetic paths
lengths to a resolution cell (including ray beuding) from the two interferometric antennas;



3) ¢, the interferometric phase difference; 4) 1}, the interferometric baseline (the conven-
tion used is that F*:I? +7_) ; and, 5) v, the platform velocity. It is convenient to define
7 = (734 7~ )2 as the vector from the reference position to the resolution cell, and # as a
unit vector pointing from the reference point to the resolution cell (scc figure 1).

These measurements, together with the following auxiliary equations

d = —k(Fy - 7) (1)

dr dr .
2nfp = -vaEi = 2L;hn-v (2)
ot = ] (3)

must be used to determine the line of sight direction to the pixel, #,and the geometric
range, r. in the previous equations, k is the wavenumber, and fJ, is the Doppler frequency.
Given 7 and r, the position vector to the resolution cell, 7y, canbe obtained by means of
the cquation
Tg = Tg + T 4
For most airborne applications, terms of order (#3/r)3 and ray bending may be ignored
when considering the interferometer sensitivity. in this case, the first two interferometric
equations may be written as

n-BB = — =
Nl % ©)

At o= == (6)

An interferometer location algorithm based on these equations was first presented by Mad-
scen et al. [4]. Below, wc shall show that the effects of tropospheric propagation do not
significantly change the form of these equations. We will use the simplified equations in our
subsequent analysis since the usc of the exact equations adds unnecessarily to the algebra
without contributing to physical understanding, or, in any significant way, to the numerical
accuracy of the error anaysis.

Theinterferometric positioning eguations can be given a geometric interpretation: equa-
tions (5 ) and ( 6 ) define two cones with axes in the B and & directions, respectively. A
point in three dimensional space is defined as the loc.us of intersection of the two cones and
the sphere of radius r. This locus is not uniquely defined: in genera], the cones intersect
along two straight lines starting at the origin, symmetric about the plane spanned by B and
¥. The intersection with the range sphere occurs at two points. Discrimination between
these two points is accomplished by specifying which side of the B-% plane the point occu-
pies. Mathematically, this is reflected by the fact that equations ( 5 ) and ( 6) determine
two components of 2: the ones in the plane determined by the baseline and velocity vectors.
The third component is specified (up to a sign) by requiring the look direction be a unit
vector.




3. Interferometric Sensitivity Equations for Arbitrary Geometry

From equation ( 4 ), the error in the interferometric measurement can be written as
0Ty = 67y + nér + rén (7)

The first two error sources are simple to characterize. The first one corresponds to a shift
inthe coordinate system; the sccond to a timing error.

Itis clear that any errors in the baseline or velocity which do not affect equations ( 5 )
and ( 6) will not introduce positioning errors. i.e., the interferometer is insensitive to errors
whit.}] are perpendicular to 7. This implies that for a sidelooking system, speed errors will
not introduce positioning errors. Similarly, if the antenna baseline is orthogonal to the look
direction, a dilation of the baseline will not introduce positioning errors (to the accuracy
of the previous eguations). Thisis of great practical advantage sinceit implies that one
need only concern oneself with the comnponent of the error aong the look direction when
designing a baseline or velocity monitoring system. in addition, it greatly simplifies the
form of the sensitivity equations.

Characterization of the last error source can be made by noting that, since 7 is a unit
vector

fn-n=0 (8

Ience, errors due to this term must lie in a plane perpendicular to the look direction.
The error canbe further characterized by specifying the error source: phase error, velocity
error, or baseline error. The measurement of interferometric phase and platform velocities
are independent. Differentiating equations ( 5 ) and ( 6 ) one obtains, respectively

on - ‘

a5 D = 0 (9)
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=T = 0 10
oi " (10)

Together with equation ( 8 ), the first equation implies that an error due to velocity errors
must be simultaneously perpendicular to the look and the baseline directions. This condition
is only satisfied if the position error lies aong the axis defined by the vector ax B. Similarly,
an error in the baseline will induce a position error which lies on the axis defined by the
vector 7 X 9. A simple consequence of these results is that if the look direction, the baseline,
and tile z axis arc coplanar, an error invelocity will not produce an error in height (but
will still produce an error in location).

The characterization of position errors due to phase errors is aided by the following
relation, which is obtained by taking the total derivative of eguation ( 6 ), and noting that
the Doppler frequency is set arbitrarily

Eh T4 6T =0 (11)




i.e., there will be no error aong the velacity direction unless there is a velocity error. Thus,
a phase error must induce position errors which are simultaneously perpendicular to # and
#. This implies that the induced position errors must lie on the axis defined by the vector
it X ¥;i.e.,on the same axis as baseline errors.

The geometric characteristics of errors in #2 due to errors in the wavenumber, k, or,
equivalently, in the speed of light or wavelength, are not as apparent from the previous
cquations as those for velocity and baseline errors. Nevertheless, it can be argued that this
error must satisfy two requirements: first, as with the other errors, it must be perpendicular
to the look direction; second, if the look direction is perpendicular to the baseline, the phase
diflerence is zero, independent of the wavenumber. Therefore, this error will be minimized
as the look direction approaches the direction normal to the baseline, when the phase error
is least sensitive to the wavenumber chosen.

Appendix A presents a detailed derivation of the sensitivity equations which include the
effects outlined above. The fina result is given by the vector equation

L ixd [60 88 ixb . 67 bxb ]k
07y = 6Fg 4 br+ 10— | — — R — [+ Pt — 1 [ = A —
’ b-(Axd) | B B b- (7 x D) b- (R x D) k
(12)

where b = B/B is the unit vector along the baseline direction. This form clearly shows
that an crror,ﬁ]?, in the baseline is completely equivalent to an error in the phase given by
§&=kn.6H. It aso shows that when the look direction is aong the direction @ x 13, the
position error is independent of wavenumber, as was argued previously.

The determination of positioning, velocity, and baseline errors is conceptually straight-
forward, although often difficult in practice. Up to a factor, which is roughly of unit
magnitude, the previous equations show that the fractional position error, |67y/r|, is of
the same order as|i - &7, |7 - &8, or 67a/r. For geologic airborne applications, a typical
requirement is |67, /r|~ 10 For spaceborne applications, this requirement is even more
stringent: |67,/r| ~ 1075, It is clear that these requirements place great demands on the
navigation and baseline determination sensors,

4. Interferometric Phase Noise

Unlike the geometric terms, whit}] are inherent to all triangulation schemes, the phase
error is intrinsic to the InSAR technique and wc devote the next three sections to studying
it in detail. The phase error can be divided into systematic and random components.
Systematic errors can be caused by systematic changes in the electrical path traversed
by the interferometric signal, or by eflects intrinsic in the observed scene, such as non-
homogeneous scenery or penetration in a vegetation canopy. The former type of error is
straightforward to understand and model. Typical sources arc radome inhomogeneities or
multi-path effects. We deal with the latter source of error below.




Due to speckle and thermal noise in the return signal, the interferometric phase contains
random errors. in Appendix B we show that, for homogeneous targets, the maximum
likelihood estimator (MLE) of interferometric phase is given by

, Im (52 o2
¢ = arctan N, T e (13)
Re (Lk;] vy v )1
where Ny, is the number of looks to be averaged.
Appendix B shows that the Cramer-Ra.o bound for the phase standard deviation is given
by
. N1 1 \/1~ 42
(@- @71 = o5 (14)
where « isthe correlation between the signals in the two interferometric channels. The most
important characteristic of this equation is that the phase noise is only a function of the
number of looks and the correlation between the two interferometer channels, which will be
derived below.

The M LE estimator is unbiased, and the phase variance can easily be obtained numeri-
cally, as shown by Liand Goldstein [2]. Figure 2 presents a comparison of the actual phase
standard deviation against the Cramer-Rao bound for various values of the correlation. As
can be seen, the phase standard deviation decreases much faster than N '/% for the first
four looks, The fact that this happens more quickly for two looks when the correlation
islow isdue to 27r ambiguity in the phase. As the number of looks increases, the higher
correlated cases approach the asymptotic behavior more quickly. After four looks, the phase
standard deviation is well approximated by the Cramer-Rao bound.

5. Interferometric Return Signal Characteristics from Distributed Targets

We consider an interferometer system with geometry as depicted in figure 1. We assume
one transmitter and for each of the interferometer receivers, wc model the interferometer
coherent signal, vi (i=+, -), for range 7o and cross range coordinate Zo, by

I
vy (ro + A/2, xo) = Ajd%lzdjé e 2iky T4 fz,y,2)Wi(ro + AI2 -- r4,%0 2)4ny

v(r0o — A/2 + br,70 + §,) :jAddj[dS e k-(r447-) (2, Y, 2)
W_((ro-AI2 -i 6,)—r_,(o+6;)—2z) 4 n_

where 1 is the therms; noise contribution} to thesignals,dS is the infinitesimal area element
onthe plane perpendicular to z, ki is the wavenumber (= 27/ ;) for the carrier frequency at
each reciver, W;(r,z) is the system’srange cross-range point target response, r; represents
the range from the i** antenna to the scattering point, and A is a constant which depends

(15)




on the system parameters. We have assumed that both signals arc offset by a deterministic
range +A/2 so that thiey will be coregistered in range. We have alowed for the existence of
range and azimnuth coregistration errors, é, and é,, respectively. We have also alowed the
possibility for difflerent carrier frequencies at each receiver. This can be achieved either by
utilizing different parts of the transmitted bandwidth, or by transmitting and receiving from
each antenna at diflerent frequencies (in which case the term r, 4 r_becomes 2r_). Finally,
we have assumed that the scattering characteristics do not change across the transmitted
bandwidth.

Very often, single scattering (one bounce) is the dominant scattering mechanism from
natural targets. We postpone the detailed treatment of multiple scattering for specific media
and treat single scattering only inthis paper. However, the effect of multiple scattering can
be understood qualitatively. When only one transmitter is used, it is not difficult to convince
oneself that, for a simple multiple bounce scattering mechanism where the path length is
identical for both signals until the final scatterer, the interferometric phase ineasured is the
same as that due to tile final scatterer alone, Therefore the InNSAR will estimate the ook
direction from this scattering event as being the direction to the last scatterer. However,
duc to the additional distance travelled by the rays, the return willbe placed at a greater
range than the return from the last scaterer. The magnitude of this range error depends
on the length of the scattering path, which is a strong function of the scattering medium.
Due to the reciprocity of the electromagnetic field (which only applies approximately to the
second receiver), for any simple multiple bounce path that contributes to the interferometric
phase there will also be a contribution from the time reversed path. This will cause the final
interferometric phase to be an average of the interferometric phases due to scatterers at the
ends of the scattering chain, thus setting the angular elevation equal to one corresponding
to a point between these two points. When two transmitters are used, there is an additional
phase contribution which acts as a noise term and is not as easy to interpret.

These considerations motivate us to assume that the surface scattering amplitude,
f(z,y,z),0beys the following equation

(2,927, 4',2)) = ag(z, y, 2,0)8(x - 2')6(y - ¥)6(2 - 7)) (16)

where do(z,y, z,8) is the normalized backscatter cross section per unit height for incidence
angle #. Notice that the more common normalized radar cross section is defined as

oo(x, ¥, 0) = ] dz ooz, vy, 2, 6) a7

If the SAR coherent return signal has circular Gaussian statistics, as is often observed,
acomplete characterization of the interferometric return can be obtained by calculating the
complex covariance matrix for vy and v_.Using equation ( 16 ), and the fact 71 and 72



arc uncorrelated, the complex covariance of vy and v_ is given by

(vy (ro4 A/2, 20)v* (10 - AI2+ §,, 20+ 65)) = |A|? /dz / dS oo(z, y, z,80)exp[-ik_(ry - r. )]
exp (—i25k7‘+)1’V+(7‘0 + Al2 - ry,%To0 - )
WZi(ro-AJ24 6, — vy, %0+ 6, — ) (18)

where we have defined the wavenumber difference as 6k =ky - k_.
Tomake further progress, we expand about To and approximate
, 67, B
ry—7- =~ A+ B-(1-17)- o0 - A R Y (19)
To To

. B .. B
A = ot 5] 7o~ 51 (20)

where I3, is the projection of the interferometric baseline onto the direction perpendicular
to the look direction, and# =70+ é7o . Equation ( 19 ) makes it apparent that locally there
is a phase difference between two points only if their separation vector is nonzero in the
]7/|]?| direction. We decompose the scatterer height locally into a tilted plane component
and an additional componenent, Z, representing the height above the mean tilted plane

z=zlanT, + ytanty, + 7 (21)

where the coordinates =, y, and z are measured from the expansion point, and 7, and 7y
represent the surface slopesin thezand y directions, respectively, and we assume that the
scatterer properties are only governed by their height above themean tilted plane

oo(%, y,2,00) =0a0(Z,0o) (22)

We expect this assumption to be good for most natural targets which have no sharply
defined changes in surface brightness, This assumption is not as good for some inhabited
arcas, where sudden changes in the reflectivity are common, and wc consider another model
below to study these cases.

After some algebra, equation ( 18 ) can be integrated analytically to obtain the complex
covariance. It is given by

. 9  COSTy _
= Y exp [~k A + 26k
<v4pv_ > |A| lsin(90 _ Ty)l (‘X})[ l( + + TO)]
(k)T (K, + 26k, K, tan 74, 6,,6;) (23)
o( Kk,) = 3 dZ exp [- ik, Z)0(Z) (249)
ky B,
S S 25
" ro tan(fp — 7y) (25)
_ kyBycost, oS Ty
i T sin(6p — 1) r cos(fp — 1y) (26)
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and the function I'(k, + 26k, k, tan 7., 6,,0;) is defined as

1 2
I'(k, + 26k, K, tan7,,6,,8,) = (ﬁ) /dr;] dky exp[-16, (k1 + Kk, + 26k)] exp [~18, (k2 + tan 7.k, )]
W, (K1, K2)W2 (ky + (Ky + 26k), Ko + tan 7.x,) (27)
= /dz dr Wi(r,2)WX(r 4 8,z + 6;) explir (k, + 26k)] exp [¢ tan 1.5, 7)

where Wi(k1,K2) is the Fourier transform of Wi(r,z) defined as
‘/i/{(ﬁ],ﬁ2) = /d’l‘ dz (:_i(K’H'"?x)VV,'(r,x)

Notice that when two transinitters are used, the only difference in the previous formulas is
that £y must be replaced by k; + k_.

The phase of the interferometric product must be corrected for a range dependent term
if 8k# O. The expression derived above also shows the phase biases iutroduced by errors
in alignment, of the two interferometric images, as well as errors introduced by the presence
of volumetric scattering,

Assuming that the return power for each pixel is the same at both receivers the corre-
lation coeflicient between the two signals is given by

Vv [2)(|v-1?)
|6(k)| 1 (Kr + 26k, K, 1an 74, 6, 6,)) 1
= = e e e = 767N (28)
3o I1'(0,0,0,0)| V14 SNR;/1 + S8R,

where SNR; is the 2’th system’s signal to noise ratio. The correlation is the product of
ageometric correlation function, Y&, which is purely a function of the shape of the pixel
illumination function and the registration error, a correlation function, vz, which depends
on the vertical distribution of scatterers, and a correlation function, Y~ which is purely
afunction of the therma noise. Notice that in principle yg and Y~ can be determined
through calibration and from the estimated topography. This means that, if the complex
correlation (including phase) is measured, the complex correlation vz can be determined
up to an overal phase and, since it is proportional to the Fourier transform of the vertical
distribution of scatterers, this distribution can be recovered if enough incidence angles and
baselines are obtained. A more detailed analysis of this inversion will be presented elsewhere.

Notice that, in principle, mmultiplicative noise factors, such as the phase noise due to
the sidelobes of other targets (ISLR or integrated sidelobe ratio noise) are automatically
included in~y¢ if the surface is homogeneous. In practice, scene inhomogeneities or topo-
graphic features may introduce additional phase biases and, possibly, decorrelation. This
situation will be treated below.




The geometric correlation function is the extension of the usual van Cittert-Zernike
theorem [5] to scatterers distributed inthree dimensions. As was first noted by Zebker
and Villasenor [6], when the carrier frequency is the same for both receivers, the geometric
correlation coeflicient is proportional to the convolution of’ the Fourier transform of the two
point target response functions. ‘I’he source of the geoinetric decorrelation term is the fact
that the speckle observed at different anglesis decorrelated.

Gatellietal . [1] first proposed that the same speckle pattern could be obtained at two
different angles by requiring that the projected wavenummber on the surface be constant.
This results in points at the same height having the same interferometric phase difference
(but different slant range). This is seen from eguation ( 27 ), which shows that maximum
correlation is achieved when §,.=46, = O and k, = —-26k. Neglecting the effects of surface
tilt, and misregistration, when this condition is satisfied the geometric correlation factor in
cquation ( 28 ) is equal to one and the only contributors to the phase noise are vy, and YN-
An additional advantage of making this choice is that misregistration in range will not induce
any height errors. In fact, we show in Appendix C that when k, =—26&k these advantages
will persist in the presence of an arbitrary distribution of surface scatterers. Although these
considerations show that selecting two frequencies is desirable, it is impossible to match the
frequency diflerence across an image since the projected wavenumber changes as a function
of range. In practice, one must subdivide the sceneintosegments for which the match is
adequate.

To implement the procedure proposed by Gatellietal . [1] given a single transmit
bandwidth, one must truncate the spectra of the two received signals to synthesize a carrier
frequency difference. This spectral truncation will result in a degradation of the resolution in
the range direction. When the amount of spectral overlap (defined as 1 - x,/Ak, where Ak
is the transmit wavenumber bandwidth) is small, this may result in a significant degradation
inthe achievable range resolution, As an alternative to this procedure, one may apply a
window to the return spectrum. This will reduce the point target response (ptr)sidelobes,
at a modest cost in the range resolution, thus increasing the geometric correlation, ]n
Appendix I we study the optimal windowing function and show that, when the spectral
overlap is close to one, it is given by half a cycle of a cosine function. A comparison of the
correlation properties of various windowing functions is presentedin figure 3. This figure
shows that when the spectral overlap is large, windowing the data can significantly increase
the correlation, while, for small spectral overlaps, it is better not to apply any windowing.

The results shown in figure 3 were obtained assuming anideal point target response,
in practice, SAR processors will produce responses with features which arc not present
intheideal case: the range and cross-range sidelobes will decay at a slower rate; perfect
compression Will not be achieved resulting in the presence of energy in directions different
from the range and cross range; finaly, due to finite sampling restrictions, ambiguities




will appear away from the main peak. Figure 4 presents a typical point target response
obtained by simulation of the JPL. TOPSAR system [7] after compression with a seismic.
migration processor [8]. All of the effects mentioned above are apparent in this figure.
Using equation ( 28 ), one can calculate the correlation properties of the interferometric
return, and these are presented in figure 5 for both weighted and unweighted returns, As
canbe seen, the result of the previous features (which collectively contribute to the ISL.R)
is o decrease the correlation by an almost constaut factor. This is similar to what would
be expected if the ISLR contribution were anuncorrelated noise source. The results for
a range-l)opplcr processor such as the oneused by Madsen et al.[4] are quite similar,
although, due to the dlightly higher ISLR, there is a small decrease in the correlation.

In order to make a comparison of the relative merits of the approaches presented above,
one must take into account the fact that windowing or spectral truncation will increase the
geometric correlation but degrade the resolution, If one assumes that all results are averaged
to the same resolution by averaging in the range direction, one obtains the following results
for the phase noise for the weighted and spectral truncation methods respectively

2

Y N1
N \/ﬁ(“)\’{_]* (26", (29)

¢ \/§N7 7278” )'7N

S -------‘/] wﬁﬁ’ﬁ (30)

? V2= 5 JARYN;, 2N
where R(a) is defined in Appendix C.Figure6 show the ratio of the last two variances
against the variance for the unweighted, high resolution data. It is clear fromn these r.-
sults that the windowing will only significantly improve the phase variance when the SNR
and spectral overlap are both high, while it can actually slightly degrade performance for
small values of SNR. On the other hand, despite its loss of resolution for small spectral
overlaps, the spectral truncation method provides a significant reduction in the phase noise
throughout al the parameter space considered here.

The optimum frequency difference is a function of surface slope, which is not known a
priori, and a degradation in correlation will occur when the actual slope is different to the
one used to estimate the frequency difference. To minimize this degradation, one can weight
the return spectrum, as discussed above, Since the typical slopes found in natural terrains
arc not extremely large, so that the spectral overlap remains large, a simple half-cosine
weighting should be adequate, Yigure 7 shows that for radar parameters typical of airborne
radars (15km range, 40 degree iucidence angle, 2m baseline, 40MHz bandwidth) this type
of weighting canake the geometrical correlation coeflicient almost unity for wide range of
slopes.
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6. Effects Due to Scene Inhomogeneity

The fact that the imaged scene is not homogeneous can introduce errors in the estimated
height. Above it was shown that for homogeneous scenes the phase center of the scattering
area coincides with tile “geometric’ phase center (weighted by the volumetric scattering
density). This is no longer true for inhomogeneous scenes. sidelobes from a bright, part of
the scene may leak into darker parts, thus shifting the phase center and inducing errors in
the estimated angular elevation of the imaged cell. In Appendix C we show that, when one
can arrange that 26k = —«,, the height error induced is given by < z >, i.e. the mean
height of all scatterers contributing to a resolution cell weighted by the power they leak into
the resolution cell. This simple result is due to the fact that, for 26k = —k,, two nearby
points will differ in interferometric phase only if they differ in height. This is not true in
general since the interferometric phase is a function of look angle and nearby points will
have different phases, even if they arc at the samme height. In this section, wc treat the
height and position errors for the general case.

A simple estimate of the measurement error for an arbitrary distribution of targets is not
available in the general case. Sine.c typical scenes vary mostly in the horizontal direction,
wc restrict ourselves to an inhomogeneous distribution of scatterers in a plane to obtain an
estimate for the magnitude of the position error. Yrom the results derived above, one has
that the deviation in the interferometric phase is

6@ = tan™! G;Z{ZD (31)

where _ . 25k )y sin 8
eik+ A+26kr07 - L{{(y,?)l’(gsm O,Z)'c‘(ﬁr+ Jysin ds (32)
Jo(y,z)P(ysin8,z)dS
Here P=WW™ is the point-target response in the power domain, and wc have neglected
registration errors.
Wc examine the simplified case of the influence of a single bright point target on an

otherwise uniforin scene:

5=

o(z,y) - 00 +016(y - y1)6(z — 21). (33)

After integration, the interferometric phase deviation is given by the phase of

5 -1 P(y18n 0,5 3o Hitrr426kpmsing 100 P((k, 4 28k) sin 6, O)

= 34
o1P(y1sin 8,2,) + a0 P(0,0) (34)

where P is the two-d imensional Fourier transform of P’. Using (0, O) = 1 and assuming
that ’(y, O) is symmetric and therefore I’(k,, O) is real, and defining the power of the point
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target response multiplied by the ratio of the cross-section of the bright target to that of
the background asthe “weighted contrast”:
. 0] P(y sine, )
0,7)=dn?— V= ;
10(y5|n ,iL‘) oo sin P("Cr n 2616,0) (35)
we obtain the int erferometric phase deviation as
sin((k, +26k)y1 sin 6) 1
6= tanl| —--- T ST
w1y, SN 0. 2D + cos((k, -t 26k)y; sin"p), (36)

in a side-looking geometry, the height and position errors are

6);:1?Cos & and  by=6h/tan 9, (37)
respectively. When «,y << 1, so for nearby bright targets such that w(y sin 8, z) >> 1 the
positioning €rrors are approximately:

bh ~ ]-—{1115) 1 sin 6 cos 0, by ~ T—%’w y1 cos? 6 (38)
which has a simple geometric interpretation. Define the “phase center” seen by the radar
as the aim point weighted by the nearby bright target:

Yp = %1 T:Lw (39)
This function interpolates smoothly between y,, the location of the bright target (w > 1),
to zero, the geometric center of the resolution cell (w << 1).The height measured by the
radar is h=1-rcosf, where I is the altitude of the radar and r is the range to the
target. Thenéh =7 sin §66. The projection of the displacement of the phase center onto a
line perpendicular to the look direction is y, cos 8 =ré6, and we have recovered ( 38 ).

The height and cross-track errors computed from ( 36 ) corresponding to a single bright
point target (40 dB above the surrounding terrain) and a sidelooking geometry are plotted
in Fig. 8a and b, respectively for a point-target response with a half-cosine range-weighting.
The rapid oscillations in the error with range separation from the bright target correspond
to the oscillations in the point-target response. The magnitude of the maximum height error
as a function of the contrast between the bright target and nearby dim targets is plotted in
Fig. 8c. As the brightness of the target increases, the distance from the target at which the
maximum height error is incurred increases up to a maximum height error corresponding
to a phase deviation of « radians.

The contrast-induced height errors for an extract of a typical rura TOPSAR image
have been computed and plotted in Fig. 9. in this case, most of the errors are below the
height noise of the image, with the exception of the bright patch to the left of center. The
+3 meter deviations introduced by this group of bright targets appears to be consistent
with the interferometric height map derived from this SAR imnage.
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7. Tropospheric Effects

In the following analysis, we assume that the troposphere is a stratified medium. Earth
curvature eflects, which inay be included with a small additional eflort, but which do not
significantly alter the results, will beneglected. With these assumptions, the index of
refraction n can be modeled as

n(z) = 146(z) (40)

where 6(2) represents the variation of theindex of refraction with height and is typicaly of
order 104. An example of this type of model is the Central Radio Propagation |aboratory
(CI'{],) (now NOAA) exponential reference atmosphere [1 O] which is given by

n(z)=1+ ae” /M (41)

where the conventional values for a and H are taken to be 3.13 x 104 and 6.949 km,
respectively, when h is the height above sea level.
In Appendix E we show that the relationship between the geometric range r and the

path distance 7 is . ]E46_.13(76; [(*L)Q _ ]” (42)

Ah

where 8 and o, correspond to the height-dependent mean and variance of the variations
of the index of refraction, respectively. These two quantities are functions of the height
difference between the scatterer and the receiver, Ah, andthe height of the scatterer above
sca level, ho. Iigure 10 presents the variation of & as a function of Ak/H for varying
lo and the CPRI, model. Notice that this quantity varies with height and approaches
zero exponentially and that there can be a significant variation if the height of the scatterer
changes by a large percent of the atmospheric scale height. The InSAR errors are dominated
by fluctuations in this quantity.

To get an estimate of the order of magnitude of the second order quantities, Figure 11
presents the tropospheric variance for the CPRIL model, normalized by a’. As can be seen,
this quantity is always smaller than~ 7 x 10°, and the peak value occurs at approximately
I/ 1 =3, which, for the CPRL model corresponds to a height of approximately 21 km. For
typical airplane atitudes between 7 and 14 km, it varies approximately between 3 x 10-2 to
6 x 10-2. Figure 12 presents the variation of the factor ~a~tan26 for incidence angles varying
from 20 to 80 degrees, in 10 degree steps. Assuming that a?~ 107, this implies that the
peak fractional difference varies approximately between 10-9 to 10-7 from 20 to 80 degrees.
Yor aslant range of 15 km, this corresponds to a difference between 0.015111111 to 1.5mm.
This becomes approximately one order of magnitude larger for spaceborne platforms. Thus,
the effects due to departures from a straight line path and variations in the speed of light
inside the medium are extremely small.
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One may solve for the geometric range interms of the electromagnetic range. To second
order in é, the result is

¥

re e
]-{6~ %0? [({A)ZM]] (43)
Notice that this equation involves the height above the target, Ak, and the height of the
target above sea level, which are not known a priori. Figure 10 shows that, a 10% variation
in ho/H corresponds roughly to a 10% variation in §, which implies a ~ 10°variation
inthe average speed of light. Assuminga 15km range, this produces a range error on the
order of 15cm, which is adequate for most topographic applications. If greater accuracy is
desired, or if the surface height is known to lesser accuracy, it is necessary to iterate the
topographic estimation process to obtain better estimates for ho.
Irom equation ( 2 ), the effect of the troposphere on the Doppler frequency is equivalent
to replacing the wavenumber by aneffective wavenumber
- dF
k= ;{;k (44)
Using the results derived above, one gets

@ 464 o} [3 3 (»IY] (45)
dr 512 2\aAk
Again, thin-c is a first order effect due to the average speed of light in the medium, and
a second order term due to ray bending and differential delays. The change inDoppler
frequency depends, to first order, on the height of the target above sea level. Therefore, to
get an exact solution, an iterative approach is necessary. However, for most applications,
taking a reference height may be suflicient.
Assuming that the interferometric antennas are located at a heights h and h + éh,

the electromagnetic path length to tile second antenna as a function of the corresponding
geometric distance r. is given by

. . 96\ 6h 1 2 T_ 2
where wc have assumed that the atmosphere at the receiver is so tenuous that one can

approximate §(h + 6h) = 8(h) + 511%%1.
Using this result, the interferometric phase canbe approximated by

. 1 3 a6\ bh
b~ —k(ry —r2) [1 + 684 o} (2 =35 sec? 0)] k7 Ahﬁ Ah (47)

Wc see that the changes in the interferometric phase are amost identical to the changes in
the Doppler frequency (modulo factors proportional to (B/h)?), and the comments made
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above apply as well, However, these expressions now involve an additional t erm which is
proportional to the fractional change in the speed of light due to the fact that the two
anternimasare not located at the same height. At first sight, this term might appear to be
neglegible. However, since it is multiplied by a large factor of k7', this is not always the
case.One can rewrite the derivative term as

96\ 6h - 6h

Figure 13 presents a graph of (§(h)- 6)/a for the CPRI, model atmosphere (solid line). It can
be seen that, because the factor kr’ is typically on the order of 106 for airborne situations,
one cannot ignore the additional term in estimating the interferometric phase since it is of
the same order of magnitude as the effect of the speed of light. The dashed line isa plot
of --6/a, which describes the behaviour of the derivative for h/H>3. On the other hand,
for h/n <3, as is the case for most airbornes situations, the local index of refraction plays
animportant role in determining the value of the derivative. In a turbulent atmosphere, or
near the envelope of the airplane, this quantity may fluctuate significantly from its model
prediction. The dash-dotted lines in Figure 13 represent the effect of a 10% variation of
the local index of refraction on the derivative term, As can be seen, while the effect is
perceptible, the difference is an order of magnitude smaller than the model correction term.
One concludes that making a correction to the interferometric phase based on a mode]
atmosphere is good to order 8, and that atmospheric turbulence will introduce effects to
order 6% or higher.

Giventy,7_,®, and fp, using the relationship 7y =73 ]?/2 together with equations (
43), (45), and(46), one can solve equations ( 5 ) and ( 6 ) exactly (assuming a value of
I) to obtain# . B and #. @, athough this involves solving a cubic equation, By enforcing
tile condition that # be a unit vector, onc can then solve for it and obtain a solution for the
height of the target by using equation (4 ). The equations can then be iterated to obtain
higher accuracy. However, given the fact that the errors are dominated by uncertainties in
the speed of light, this may be unnecessarily complicated. A simpler procedure, if the target
height is known to an adequate accuracy, is to assume nominal values for r4,k and for #- 5
inthe second order terms, and to solve the equations without iterations. The solution is
then identical to the solution neglecting the troposphere, the only difference being that
the wavenumber is scaled with a factor which may depend on the angle of incidence, and
an additional correction must be applied when the baseline is not horizontal. If additional
accuracy is required, Ah is estimated from a first iteration of the topographic map, and fromn
this estimate a value for ék, the error in the wavenumber, is derived. Finally, a correction
is made to the map heights and locations using equation ( 12 ) to estimate the correction
vector.
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8. Conclusions

We have presented a systematic evaluation of the error sources for an airborne interfer-
owetric system and derived formulas for the sensitivity of the interferometric positioning
error to cach source. The most important consequences of these analyses can be summarized
asfollows:

1. in order to minimize various InSAR errors, it is advantageous to place the interfero-
metric baseline as perpendicular as possible to the look direction.

2. To reduce positioning errors, it is advantageous to place the look direction, the baseline
direction, and the vertical axis on the same plane.

3. To reduce phase noise and leakage due to scene contrast, one must usc a two-frequency
system such as the one proposed by Gatellietal . [1].

4. 1t is necessary to make corrections to both the Doppler frequency and the interfero-
metric phasre to account for delays due to tropospheric propagation. However, if the
surface height is known to adequate accuracy, these corrections arc simple to incorpo-
ratle into the standard InSAR processing scheme, The largest effect will be accounted
for merely by using the average speed of light in the medium.

Appendix A

Interferometric Sensitivities
Phase Sensitivity:
If onc decomposes the baseline into a component, ﬁu,para]le] to the velocity direction,
b, and a component, Bi= (1—1‘)1‘;).]? perpendicular to it, then from equation ( 11) and
equation ( 5 ), one has

Y
b= — 49
fi-p B, (49)
where 3 is a unit vector perpendicular to ¥ and defined by ﬁ:]?i/]ﬁ_. Defining a last
unit vector 4= 8 x #, the component of the position error along this direction due to a

phase error can be obtained by using equation ( 8)

R = - (50)

Baseline Sensitivity
From equation ( 5 ) one has that, in the presence of bascline errors,

6B =-n-68 (51)
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Since baseline errors are independent of velocity, one deduces from this equation that

LA . 6h
g = -n- B, (52)
- v= o (53)
Finally, using equation ( 8 ) one has again
Ao g - B, 68
6 1Y = ‘"“ﬁf’;‘y&n ﬂ = P ;;ln ];J (54)
Velocity Sensitivity
From equation ( 11)
b1 o= —n 07 55
Vb= - (55)
Also, from equation (51 ), one has
§v- B =ByB-6a+ Byp-bn=0 (56)
Together with equation ( 11 ), this implies
s . By 6T
p-on = -]}-—J—n e (57)
The final coinponent is obtained by using equation ( 8 )
e A 1 ((fl B B+ (- )b - 13)
n-y
1 L. By YL 67
= ?l.’?<7z-v——ﬁj1z-ﬂ)n-v (58)

Notice that, as expected, the only part of the baseline and velocity errors which matter
are the component of the errors in the ii direction.

Wavenumber Sensitivity

From equation ( 6 ), it follows that

5 .
b= -n- f)——k— (59)
k
Similarly, from equation ( 5 ), it follows that
§n- B = —iz-ﬁ% (60)
Finally, using equation ( 8 ),
S5 1 .2\ bk 61
= (g ned) g 61




The previous equations may be summarized in one vector equation. Defining the unit
vector along the baseline direction asb=JF/1, one can write the position error as

67!} — 67-a + 7l57 4 7 :’LAX}._< fsg - n 6_]_}_ _’n_i(_._l‘,_ﬁ . ﬁzj_ .+, 7| = ’Uﬁ e — Al ﬁ
b (7 x D) B b-(nxv) v b- (7 x ) k
(62)
Appendix B

Model the interferometric signal by a set of Nj, pairs of SAR returns,(k%q(f)v;l , <
k< Njp, where elements in the pair represent the voltage returns from the same resolution
clement viewed by each of the InSAR antennas. We assume the signal has the following
correlation properties:

(P = s+ V) o9
oy = gu(py 4 N) ©
oy = 6 (Poyare™) (85)

where Py is the signal power, N is the thermal noise power, O <vGr<1, and @ is the
interferometric phase, which is the parameter to be estimated. Notice that it is assumed
that the interferometric phase ¢ is the same for all signal pairs. This implies that the
resolution elements to be averaged have the same height and are located along isophase
lines (which correspond to the along track direction for a flat surface). Notice also that
the incan power is allowed to vary from resolution element to resolution element, as is the
magnitude of the field correlation coeflicient. This allows for the possibility of averaging
different resolution elements whose intrinsic brightuess and intrinsic roughness may not be
the same. In this case, the upper index labels the resolution element. On the other hand,
one may gain independent samples by overlaying independent looks of the same resolution
element,. In this case, the upper index labels the independent looks, and P and YGk are
constant from look to look.
The correlation coeflicient for any interferometric pair (k=1) is given by

(vy (*) *(k)) SNRkvGk o . e
(v (k) *(k)> = 14 SNR, €'’ = e (66)
Define Xk as
Xk = (4) (‘))Ckl(v*(k N o (67)
| Iv(k 2 =ity (k) > (%) 'yke’q’vl( Jp(*) 68)
(]L +F )(] 7
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where C;‘is the inverse of the correlation matrix for vﬁ‘)

and v(k), Define also

Ny,
X=Xk (69)
k=1

After al these defmltlons we are ready to prove the main result of this Appendix:
Lemma: Let f( v ....viN"),vSN")|Q>)be a conditional probability function for
the interferometeric observatlons given the interferometeric phase difference ¢. If

1. the only dependence of fond is through a function of x

2. f is a strictly monotonically decreasing function of y

the maximum likelihood estimator for & is given by

B p9ym®
= A BLLE I 70
"L T+ N)(1-D) (79

For the case in which al the pixel pairs have the same statistics, this reduces to

N (%) *( )
d = arctan Im ELI-?' k (71)
Re N o{F)yr (%)

which is the estimator used by Li and Goldstein [2].
Proof: Themaximum likelihood estimate for ¢ is given by solving the equation

(1) (1) (N1) | (Ng) _
aq)f( ..,’U+ y U I‘I’)—O (72)

provided fisa maximum (nota minimum) at this point. Because of assumption (1), this
can be written as
0O¢. 0

ox 99X
Fromm assumptions (2), and since fisapdf and X is a biquadratic formm (which implies
X=0 iﬂlv&k)|2 = |v(_")|2 = O Yk, which is not au interesting case since it implies the
absence of a return signal), this condition reduces to

=0 (73)

o ’<i> Ny, ’ka(k) *(k )
— Y =1 -t — e — - X COIj = 74
saX = ile g Fed N - complex conjugate 0 (74)

This is easily solved for & to obtain

R Ny, 7kv(k)v *(k)
beg |5 (75

(P + N)A - f)
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in the case where al the pixel pairs have the same statistics, this reduces to

. ~N;, (k) *(k)
¢ = arctan Tn D k2 19,7-,,_. . (76)
Re YV ]v Jyr(¥)

which is the promised result. Due to speckle, the mean power cannot be determined for
individual pixels, and, in practice, one always assumes that all the pixels in a multi-look
image have the same statistics. In this case, the last formula is the correct one to apply,
However, if enough looks are taken, or if a priori information exists, one may be able to
make use of the previous formula

The two relevant pdf’s for radar scattering speckle arc the circular Gaussian

1
I Gorpicpn 0N o

and the multivariate K distribution [9]

_____ (20)1+a/2 af2-1 -
f (27() ]|CI1/2 WVQ({:n]]Ih( ‘)’ ”1(2'01(\/2%(!X) (78)

It is well known that both of these distributions satisfy the conditions required by the
lemma.

As aninteresting consequence of this result, one can derive the asymptotic value of
the estimated phase standard deviation if the return voltage signal is circular Gaussian
distributed. It is well known [11] that a maximum likelihood estimator approaches the
Cramer-Rao bound asymptotically and its variance is given by

1

var(®) = NoJ (79)
where Jis defined by
52
J = —(Whl f('u+ ,v |<]’)) (80)

If the pixel pair statistics are uniform over the scene, then Jis easily computed. The final
result for the estimated phase standard deviation, og, is given by the simple formula

oo = V1= (81)

Notice that, strictly speaking, these equations apply to the unwrapped phase; i.e. the 27r
ambiguity in the phase estimation is assuined to have been removed. When this ambiguity
is still present, the phase noise standard deviation will saturate as the phase becomes
uniformly distributed in the interval [0, 27]. Equation ( 81 ) applies when o¢ << 7, which
is the normnal situation in interferometry.
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Appendix C

When 26k = —k, and for zero slopes, one may rewrite equation ( 18 ) using equa-
tion (20 ) as

<vyvr > — |AlPexp[-iky Al exp]- i26kr0]/d1 dydz oo(z,y, z) exp[—ik,z]
W,y (ro + A2 - v )WZX(r0 - A2+ &, — 74,70+ 6, — 2) (82)

where, aside from the exponential, all the terms inside the integral are rea functions. Hence
it follows that, if al the scatterers are in a z=20 constant plane, the only contribution
to the interferometric phase is a constant phase factor exp [ik,20), which corrects the phase
difference for the geometric height shift in the scatterers. Notice that there is no phase
contribution due to a relative misalignment of the two point target response functions.

in typical interferometric applications, one has that k,2< 1 and one may approximate
exp[—ik, 2]~ 1— ik, z . Inthis case, one can derive a simple and intuitive formula for the
additional phase shift due to an arbitrary scatterer distribution. For small phase errors, §®
is approximately given by the ratio of the imaginary to the real parts of the integral above.
A simple calculation shows that this is given by

6 = -k, <z > (83)

where < 2 > is the average height of al the scatterers weighted by their magnitude and the
magnitude of their contribution to the resolution cell; i.e.,
Jdz dydz =z [oo(z, v, 2)Wi(ro — rg )W2(ro~ A48 — 14,20+ 6 — )]

= e - . 4
<22 [dz dy dz oo(z,y, 2)Wy(ro — 14 )W*(ro - A4 b6, — 14,20+ 6, — ) (84)

Appendix D

Assume that the ptr is separable into range and cross-range components, that misregis-
tration errors and slopes can be neglected, and that the two ptr’s are identical. Under these
circumstances, using equations ( 27 ) and ( 28 ), one can write the geometric correlation as

. Jde Wy W (k (K, + 26k))W (k)
w = e 85
Yo(W ke +26k) =", ... fdx W) (85)
We seek the function W which maximizes v¢;, given a certain bandwidth: i.e. W = O for
|x| > AK/2. Taking the first variation of y¢, and setting it to zero, one obtains the following
condition for the optimal weighting function inside the interval [- AK/2, AK/2]

Wk — (ky + 26k)) + W (K 4 (K, 4 26k)) - 2yq(W, Kk, + 26K)W (k) = O (86)
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This is a nonlinear delayed difference equation, which we have not been able to solve ana-
lytically, Notice however, that closc to the optimum solution 6y /6W = O, and the optimal
correlation, ¢, is approximately independent of W. When &, 4 26k << AK, one can expand
W in powers of k,+26kin equation ( 86 ) to obtain the following differential equation,
valid to second order in the expansion parameter

(ke + 26k)?W" (k) 4+ 2 [1 -~] W(K)= O (87)

Using the boundary conditions mentioned above and normalizing the peak of the weighting
function to 1, the optimal solution is given by

e @)
2 (I(“'*"_?ﬁ,k)y

S (P (89)

While equation ( 86) cannot be solved analytically, it can be solved numerically by
iteration. The numerical optima solutions consist of discrete frequency bands modulated
by a cosine function (which need not be zero at the edges of the bandwith). For spectra
overlaps greater than approximately 0.9, the numerical solutions and correlation coeflicients
agree very well with the results quoted above. However, while the numerical solutions do
maximize the correlation function, due to the presence of discrete frequency bands, the
resultant point target responses for spectral overlaps smaller than 0.9 tend to have very
large sidelobes, which degrade the resolution to unacceptable levels, As a compromise
solution, we seek a weighting function of the form

W(x) = cos E%z (90)

and obtain a by optimizing Y& numerically. The resultant values of a as a function of the
spectral overlap are presented in Figure 14. As can be seen, the optimal spectral window
transitions from the solution obtained above for large spectral overlaps to an unweighed
solution when the spectra] overlap is smaller than about 0.5. in Figure 3, we present the
geometric correlation function for several weighting functions, including, in addition, the
popular Hamming and Harming weighting functions. As can be seen, for large spectra
overlaps, the use of a weighting function can significantly increase the correlation, while no
weighting is preferable for smaller spectral ovelaps. Notice aso that the optimal window
proposed here has a resulting (unnorinalized) point target response given by

AKkr  ar ARr  arm

W(r) = sinc (-—2_ - ~2) 4 sinc (——é— + ~2—) (91)

whose Rayleigh (peak-to-null) resolution can be shown to be given approximately by 2z (1+
0.4(a®~a3)+al/2)/Ak =27 R(«)/Ak. This implies a degradation in resolution by a factor
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of (1 + «a/2) relative to the unweighted response. ‘I'his level of degradation is smaller than
that resoluting from using either Hamming or Hanning weighting, since these two weighting
functions have a smaller effective bandwidth than the simple cosine function considered here.

Appendix E

A straightforward application of Snell’s law results in the following two expressions for
the geometricincidence angle O and the clectromagnetic path length, #, as a function of the
height of the platform, h, the incidence angle of the propagating ray at the platform, oo,
and the index of refraction at the platform np:

en 9= SN Oty (/=) (92)
Ah- h” (no/n(z))"’cmzf)o
h
A ,J.E(z) o (93)

ho \/l - (no/n(z)) sin? 6o

It is useful to break up the electromagnetic path length into two pieces: r., the geometric
length of the curved path followed by the ray; and rq, the additional delay duc to the fact
that the speed of light in the atmosphere is lower than the speed of light invacuo . These
two quantities are given by

h 1

re = dz——— (94)
ho \[ - (no/n(z))2 sin?

i = [Tdee A1 (95)

ho \/]7~ (no/n( ))2 9111200
The geometric length differs from the true range only when there is a gradient in the index
of refraction and the incidence angle is different from zero; however, the delay length is
present even when no ray bending occurs, as is the case of nadir looking altimeters.

The previous equations can be integrated analytically for a few atmospheric profiles,
such as the CP RL profile. Instead of specializing to a specific profile, these equations can
be integrated in general by expanding in powers of §. The results are series in terms of
the moments of the variations in the index of refraction. Here, terms of order 6% and
higher will be neglected. This is justified given the magnitude of é, and given the fact that
fluctuations about any given “standard” profile will be larger than this amount. Given this
approximation, the integrations yield the following expressions

- . 1 . .
tanf = tanf [l - sec? 0f(1) + 5 (3 sect 6 — sec? 0) f(z)) (96)
. - 3 . -
r. = Ahscc [] ~ tan? 0fay+ 3 (scc“ f — sec? 0) f(g)) 97)
ry = Ah sccé[f(l) - tanzgf(z)] (98)
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where f(,)isthe nth moment of the variations of the refractive index

1 h "
Sy = Ah /ho dz 6"(2) (99)

Ah = h- hg,and § is the incidence angle at infinity, which is defined by sin 6 =70 sin O.. We
will aso use the abbreviations 6= f(;) and %= f(2) - 6%, corresponding to the mean and
variance of the variations of theindex of refraction, both of which are functions of height.

Notice that equations ( 96 ), ( 97 ), and ( 98 ) predict that the change inincidence
angle and range relative to the straight line path are first order iné, and “thus potentialy
large for large incidence angles and ranges. However, it is not these quantities that are
of relevance to the location of the target. Rather, itis the geometric range and incidence
angles to the target which are important, In this appendix, equations ( 96 ), ( 97 ), and
( 98 ) are inverted (to second order in 6) to obtain a solution for the geometric range as a
function of the measured range.

Expanding the incidence angle at infinity
6 = ~0 + 61 + 52 + ... (100)

assuming that ,, is of order ™, inserting the results into equation ( 96 ), solving order by
order, and replacing the results in equations ( 97 ) and ( 98 ), one obtains the following
sinple expression for the path distance as a function of the geometric incidence angle

1
Te Ahsec 6 1 + 502 tan? 01 (101)
[

Td

Ah secd f — o} tan? 91 (102)

The first equation shows that the ray curvature adds an additional distance to the propa-

gation, hut this distance is second order in é. Recalling that sec = T/Ah, one obtains the
relationship between the geometric range rand the path distance 7

f:r[l+5-%a§[(—&r}7)2-]” (103)

This result shows that the difference between the geometric distance and the path distance
is due to two effects: to first order, there is a constant scaling factor which accounts for the
fact that the average speed of light in the atinosphere is slower than the speed of light in
vacuo . In addition to this, there are second order corrections which are due to the increase
in path length due to ray bending, and to the variations in the speed of light in the presence
of variations in the index of refraction. Both second order effects are proportiona to the
variance of the height dependent part of the index of refraction.
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Figure Captions

Figure 1. InSAR geometry.

Figure 1: Phase standard deviation as a function of the number of looks for the simulated
results (solid line) and the maximum likelihood prediction (dashed line). The cor-
relation coeflicients used were 0.99 (crosses), 0.9 (diamonds), 0,8 (sguares), and 0.6
(triangles).

Figure 3: Correlation function for different range range windows: No weighting (solid line);
half-cosine weighting (dashed line); banning weighting (dashed-dotted line); hamming
weighting (dotted line); optimum cosine weighting (small triangles).

Figure 4: Point target response for the TOPSAIL instrument using a range migration
processor. Note the azimuth ambiguities.

Figure 5: Correlation function using the two-dimensional point target response for no
weighting (a) and half-cosine weighting (b). ‘I"he dashed line is the response expected
for an ideal one-dimensional unweighed point target response.

Figure 6: Phase noise relative to an unweighted point target response for an optima] cosine
weighting () and the spectral truncation method of Gatellietal . [].

Figure 7. Geometric correlation coeflicient for the two frequency technique as a function
of local surface slope. The solid line is for an unweighed spectrum, the dashed line
for half-cosine weighting. Theradar parameters are given in the text.

Figure 8: Errors in height (a) and positioning (b) for a single point target 40dB brighter
than the background as a function of distance from the point target, (c) Plots the
maximum height error for varying contrast values.

Figure 9: SAR contrast image (a) for an agricultural area, including fields and two roads.
The corresponding height error is plotted in (b). A corresponding cut through the
highest contrast area is shown in (c) and (d). Notice that only contrast differences in
the azimuth direction (up-down) give rise to height errors,

Figure 10: Variation of é as a function of h/if for the CPRL model.
Figure 11: Tropospheric variance for the CPRL model, normalized by o?.

Figure 12: Variation of the factor %ag tan?@ for incidence angles varying from 20 (lowest
curve) to 80 degrees (highest curve), in 10 degrec steps.
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Figure 13: Plots of (§(h)— 6(h))/a model atmosphere (solid ling) and —é(h)/a (dashed
line) for the CPRL. The dashed-dotted lines represent the effect of a 10% variation of
the loca index of refraction.

Figure 14:Optimum value of the parameter a for spectral weighting as a function of the
amount of spectral overlap.
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